Predicting Survival of Patients with Lung Cancer Using Improved Adaptive Neuro-Fuzzy Inference System

Authors

  • Abbasi, Ommolbanin M.Sc. Student in Computer Engineering, Department of Computer Engineering, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran
  • Khorsand, Reihaneh Assistant Professor, Department of Computer Engineering, Dolatabad Branch, Islamic Azad University, Isfahan, Iran
  • Ramezanpour, Mohammadreza Assistant Professor, Department of Computer Engineering, Mobarakeh Branch, Islamic Azad University, Isfahan, Iran
Abstract:

Introduction: Lung cancer is the main cause of mortality in both genders worldwide. This disease is caused by the uncontrollable growth and development of cells in both or one of the lungs. Although the early diagnosis of this cancer is not an easy task, the earlier it is diagnosed, the higher will be the chance of treating. The objective of this study was to develop an optimized prediction model of the survival of patients with lung cancer based on patients’ characteristics through data mining approach. Method: In this applied-descriptive study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) algorithm and the Particle Swarm Optimization (PSO) algorithm were applied to predict the survival rate of patients with lung cancer. The Surveillance, Epidemiology and End-Results (SEER) database of Louisville University, USA was also utilized. The evaluation of this proposed model was conducted based on certain criteria including accuracy, precision, error and root-mean-square error. Results: The obtained finding indicate the outperformance of ANFIS through PSO algorithm vs. its counterparts in this context with a 99.80 accuracy for one-year survival, 99.74% for two-years and 99.66% for five-years on SEER dataset. Conclusion: Applying ANFIS through PSO in predicting the survival of patients with lung cancer is a strong measure. Compared with other models, this newly proposed model was of the highest accuracy and precision and of the lowest error rate. Therefore, it is suggested to apply this model for predicting survival of patient.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM OPTIMIZATION USING PSO FOR PREDICTING SEDIMENT TRANSPORT IN SEWERS

The flow in sewers is a complete three phase flow (air, water and sediment). The mechanism of sediment transport in sewers is very important. In other words, the passing flow must able to wash deposited sediments and the design should be done in an economic and optimized way. In this study, the sediment transport process in sewers is simulated using a hybrid model. In other words, using the Ada...

full text

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  First,...

full text

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  First,...

full text

Liver Cancer Identification using Adaptive Neuro-Fuzzy Inference System

This paper describes the application of adaptive neuro-fuzzy inference system (ANFIS) model for classification of liver tumor as benign or malignant by analyzing CT liver images. Decision making was performed in four stages: in the first stage, image is enhanced to improve its quality. In the second stage, the liver is extracted based on thresholding and boundary extraction algorithms. Then it ...

full text

A Multiple Adaptive Neuro-Fuzzy Inference System for Predicting ERP Implementation Success

The implementation of modern ERP solutions has introduced tremendous opportunities as well as challenges into the realm of intensely competent businesses. The ERP implementation phase is a very costly and time-consuming process. The failure of the implementation may result in the entire business to fail or to become incompetent. This fact along with the complexity of data streams has led ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  19- 29

publication date 2020-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023